PIGMENTS FROM SALVIA MILTIORRHIZA

HOU-WEI LUO, BAO-JING WU, MEI-YU WU,* ZHONG-GEN YONG,* MASATAKE NIWA†‡ and YOSHIMASA HIRATA†
Nanjing College of Pharmacy, Nanjing, China; *Institute of Jiangsu Industrial Chemical Research, Nanjing, China; †Faculty of
Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

(Revised received 25 July 1984)

Key Word Index—Salvia miltiorrhiza; Labiatae; pigment; diterpene; o-naphthaquinone; tanshindiol A; tanshindiol B; tanshindiol C; nortanshinone; 3α -hydroxytanshinone IIA.

Abstract—Five new o-naphthaquinone diterpenes, tanshindiol A, tanshindiol B, tanshindiol C, nortanshinone and 3α -hydroxytanshinone IIA, have been isolated from the roots of Salvia miltiorrhiza as minor components. Their relative stereochemistries have been established on the basis of spectral and chemical evidence.

INTRODUCTION

'Dan-Shen', the dried roots of Salvia miltiorrhiza Bunge, is a clinically important Chinese drug in the treatment of heart disease. Many chemists have studied the physiologically active constituents of this drug and have isolated more than 16 orange-red crystalline pigments, abietanoids [1, 2 and refs. therein]. Most abietanoids have either a furano-ortho-naphthaquinone or a furano-para-naphthaquinone skeleton and are classified biogenetically as diterpenes. In the course of our search for physiologically active substances in Chinese drugs [3 and refs. therein], we have isolated five new pigments, tanshindiol A (1), tanshindiol B (2), tanshindiol C (3), nortanshinone (4) and 3α -hydroxytanshinone IIA (5), from Dan-Shen as minor components. This paper describes the isolation and characterization of these pigments.

RESULTS AND DISCUSSION

Repeated column chromatography of the ethanolic extract of Dan-Shen on silica gel afforded five new abietanoids (1-5), in addition to many known abietanoids which are described in the Experimental.

Tanshindiol A (1), orange-red needles, C₁₈H₁₆O₅, gave rise to spectra which were similar to those of tanshinone IIA (6) [4, 5]. However, notable differences between 1 and 6 were seen with regard to the following points. The ¹H NMR spectrum of 6 had a singlet due to a geminal dimethyl group at $\delta 1.30 \left[\delta 31.9 (q+q) \right]$ and 34.9 (s) in the ¹³C NMR spectrum (Table 1)] and the IR spectrum of 6 showed no hydroxyl band. On the other hand, 1 had two hydroxyl groups instead of a geminal dimethyl group. One of them was a primary alcohol attached to a tetrasubstituted carbon $[\delta 3.60 \text{ (2H, s)}; m/z \text{ 281 }]\text{M}$ -31]⁺] and the other was a tertiary alcohol attached to the same carbon. This was further confirmed by acetylation of 1 with acetic anhydride-pyridine to give the corresponding monoacetate (7) [v3500 and 1725 cm⁻¹; δ 2.14 (3H, s), and 4.22 (2H, s); δ 69.6 (t) and 71.4 (s)]. From the above results, the structure of tanshindiol A can be represented as 1.

Tanshindiols B (2) and C (3) had the same molecular formula, $C_{18}H_{16}O_5$ (m/z 312 [M]⁺), and their spectral data were quite similar to each other, indicating that they must be stereoisomers. Thus, in addition to each tertiary hydroxyl group, 2 had a secondary axial hydroxyl group [δ 3.98 (1H, dd, J = 4.8, 2.9 Hz)] and 3 had a secondary equatorial one [δ 3.96 (1H, dd, J = 4.0, 12 Hz)]. In fact, oxidation of either 2 or 3 with sodium periodate gave the same product (8). 8 had an acetophenone-type methyl ketone moiety [δ 2.61 (3H, s)] and a phenylpropionaldehyde moiety. The presence of the latter moiety (Ar-CH₂-CH₂-CHO) in 8 was established by the ¹H NMR spectrum with the aid of double resonance

Table 1. ¹³C NMR spectra of 4, 6 and 7 (25 MHz, CDCl₃+CD₃OD, TMS as internal standard)

C	7	6	4
1	28.8 t	30.2 t	28.3 t
2	19.2 t	19.3 t	22.2 t
3	32.3 t	38.0 t	38.0 t
4	71.4 s	34.9 s	197.3 s
5	143.0 s	144.8 s	134.6 s
6	134.3 d	134.0 d	134.2 d
7	120.5 d	120.6 d	120.9 d
8	129.3 s	127.5 s	133.6 s
9	125.8 s	126.3 s	126.4 s
10	145.2 s	150.6 s	150.5 s
11	182.9 s	183.5 s	182.8 s
12	175.2 s	175.7 s	175.5 s
13	121.3 s†	121.3 s†	122.0 s†
14	161.2 s	162.2 s	162.7 s
15	142.1 d	141.9 d	143.2 d
16	120.5 s†	120.6 s†	120.9 s†
17	8.7 q	8.7 q	8.7 q
18	69.6 t	31.9 q	_
19		31.9 q	_
Me	20.8 q		
CO	182.9 s		

[‡]To whom correspondence should be addressed.

[†]Values can be interchanged.

816 H.-W. Luo et al.

1
$$R^1 = CH_2OH$$
, $R^2 = OH$, $R^3 = R^4 = H$

2
$$R^1 = Me$$
, $R^2 = R^3 = OH$, $R^4 = H$

3
$$R^1 = Me$$
, $R^2 = R^4 = OH$, $R^3 = H$

4 $R^1 = R^2 = 0$, $R^3 = R^4 = H$

7
$$R^1 = CH_2OAc$$
, $R^2 = OH$, $R^3 = R^4 = H$

5
$$R^1 = OH, R^2 = H$$

6
$$R^1 = R^2 = H$$

10
$$R^1 = OAc$$
, $R^2 = OH$

11
$$R^1 = H$$
, $R^2 = OH$

8

experiments [δ 3.32 (2H, m), 2.90 (2H, m) and 9.85 (1H, near s)]. Irradiation at δ 2.90 caused, respectively, the multiplet at δ 3.32 and the near singlet at δ 9.85 to collapse to a singlet and a sharp singlet, whereas on irradiation at δ 3.32 the multiplet at δ 2.90 became a near singlet. The stereochemistries of the two vicinal hydroxyl groups in 2 and 3 were determined on the basis of the following chemical evidence. Treatment of 2 with acetone in the presence of anhydrous cupric sulphate resulted in the recovery of the starting material, but treatment of 3 under the same conditions readily afforded the corresponding acetonide (9). The structures of tanshindiols B and C can therefore be represented as 2 and 3, respectively, including the stereochemistries of the two vicinal hydroxyl groups.

Nortanshinone (4), $C_{17}H_{12}O_4$, gave rise to spectra similar to those of tanshinone IIA (6). Moreover, 4 had one arylic carbonyl group [δ 197.3 (s)] instead of a geminal dimethyl group in addition to two ortho-quinone carbonyl groups $[\delta 175.5 (s)]$ and $[\delta 182.8 (s)]$. The location of the arylic carbonyl group was assigned by analysis of the ¹H NMR spectrum with the aid of double resonance experiments. On irradiation at δ 2.12, the multiplets at δ 2.71 and 3.46 were changed to sharp singlets. The signal at $\delta 2.12$ was changed to a triplet on irradiation at $\delta 2.71$ as well as at 3.46. Furthermore, the doublet at δ 7.96 in 1 was shifted to $\delta 8.37$ in the ¹H NMR spectrum of 4. This downfield shift seemed to be due to the anisotropic effect of the carbonyl group. From these results, the structure of nortanshinone can be represented as 4. In addition, tanshindiol A (1) was subjected to oxidation using sodium periodate to afford a carbonyl compound which was identical to nortanshinone (4).

The last pigment, 3α -hydroxytanshinone IIA (5), $C_{19}H_{18}O_4$, had a geminal dimethyl group $[\delta 1.33 (6H, s)]$

and a secondary hydroxyl group [δ 3.67 (1H, m)], which was readily acetylated by acetic anhydride-pyridine to give the corresponding acetate (10) [δ 2.05 (3H, s) and 5.00 (1H, t, J = 4.9 Hz)]. The presence of the partial structure OH

■-CH₂-CH₂- \dot{C} H- \blacksquare in 5 was established by the following experiments. On irradiation of 10 at δ 5.00, the multiplet at δ 2.03 changed to a triplet, and then the multiplet at δ 3.32 as well as that at δ 5.00 changed to a singlet on irradiation at δ 2.03. Finally, the multiplet at δ 2.03 changed to a doublet on irradiation at δ 3.32. In 1968, hydroxytanshinone II (11) having a secondary hydroxyl group at C-1 was reported by Kakisawa *et al.* [5]. The physical data of 5 are clearly different from those of 11. Therefore, the hydroxyl group in 5 must be located at C-3. This was also confirmed by the ¹H NMR spectra, which showed the signals due to the benzylic methylene protons at δ 3.26 (2H) in 5 and at δ 3.32 (2H) in 10, respectively. From the above results, the structure of 3α-hydroxytanshinone IIA can be represented as 5.

With the exception of 4, we have not established the absolute configurations of the new pigments (1-5).

EXPERIMENTAL

Mps: uncorr; ¹H NMR (100 and 60 MHz) and ¹³C NMR (25 MHz): CDCl₃ unless stated otherwise, TMS as internal standard; IR: KBr; MS: direct inlet system.

Extraction and separation. Dan-Shen (ca 120 kg) from the Shandong Province (China) was mechanically crushed and extracted with hot 95% EtOH. The conc. extract (1.2 kg) was treated with C_6H_6 to give a C_6H_6 -soluble fraction (ca 800 g) and a C_6H_6 -insoluble fraction (ca 400 g).

The former fraction was chromatographed on silica gel and

eluted successively with C_6H_6 and C_6H_6 -CHCl₃-MeOH (9:1:0.5). Each fraction obtained was rechromatographed on silica gel using a gradient of CHCl₃-Me₂CO to afford five known pigments, tanshinone IIA (78 g), tanshinone I (6 g), methylenetanshiquinone (2 g), cryptotanshinone (2 g) and dihydrotanshinone I (1 g) as crystals, respectively. The mother liquor of tanshinone I from CHCl₃-MeOH was coned and further separated by CC on silica gel using CHCl₃ containing an increasing amount of Me₂CO to give nortanshinone (4) (101 mg).

The C_6H_6 -insoluble fraction, which was soluble in a mixture of C_6H_6 -MeOH (9:1), was subjected to dry CC on silica gel. The very polar fraction (ca 260 g) eluted with C_6H_6 -MeOH-formamide (7:3:0.5) after elution with C_6H_6 was rechromatographed on polyamide powder using 95% EtOH to afford a mixture of reddish pigments (120 g). The mixture was separated further by CC on silica gel using CH_2Cl_2 -EtOAc (3:1) to afford four crude pigments (1, 2, 3 and 5). These pigments were purified by prep. TLC on silica gel (CH_2Cl_2 -EtOAc-MeOH, 15:5:1) followed by recrystalization from $CHCl_3$ -MeOH to afford pure pigments, 1 (90 mg), 2 (90 mg), 3 (30 mg) and 5 (85 mg), respectively.

Tanshindiol A (1). Mp 222–223°; HRMS m/z: Found 312.0992 [M]⁺ (C₁₈H₁₆O₅ requires 312.0996); IR v cm⁻¹: 3530, 3400, 1655, 1570, 1530; ¹H NMR: δ 1.81 (2H, m), 2.26 (3H, d, J = 1.8 Hz), 2.69 (2H, m), 3.21 (2H, m), 3.60 (2H, s), 7.39 (1H, q, J = 1.8 Hz), 7.64 (1H, d, J = 7 Hz), 7.91 (1H, d, J = 7 Hz).

Tanshindiol B (2). Mp 210–213°; HRMS m/z: Found 312.0987 [M] $^+$ (C₁₈H₁₆O₅ requires 312.0996); IR v cm $^{-1}$: 3470, 1655, 1570, 1530; 1 H NMR: δ 1.50 (3H, s), 2.14 (2H, m), 2.27 (3H, d, J = 1.5 Hz), 3.35 (2H, m), 3.98 (1H, dd, J = 4.4, 2.9 Hz), 7.26 (1H, q, J = 1.5 Hz), 7.66 (1H, d, J = 8 Hz), 8.03 (1H, d, J = 8 Hz).

Tanshindiol C (3). Mp 213–215°; HRMS m/z: Found 312.0988 [M]⁺ (C₁₈H₁₆O₅ requires 312.0996); IR v cm⁻¹: 3480, 1660, 1570, 1530; ¹H NMR: δ 1.46 (3H, s), 1.55 (2H, s, OH, disappeared on addition of D₂O), 2.16 (2H, m), 2.27 (3H, d, J = 1.5 Hz), 3.36 (2H, m), 3.96 (1H, dd (br), J = 12, 4 Hz, changed to a sharp dd on addition of D₂O), 7.26 (1H, q, J = 1.5 Hz), 7.64 (1H, d, J = 8 Hz), 7.97 (1H, d, J = 8 Hz).

Nortanshinone (4). Mp 231–232°; HRMS m/z: Found 280.0711 [M]⁺ (C₁₇H₁₂O₄ requires 280.0734); IR ν cm⁻¹: 3120, 1660, 1570, 1530; ¹H NMR: δ 2.12 (2H, m), 2.30 (3H, d, J = 1.8 Hz), 2.70 (2H, m), 3.40 (2H, m), 7.31 (1H, q, J = 1.8 Hz), 7.77 (1H, d, J = 8 Hz), 8.33 (1H, d, J = 8 Hz).

 3α -Hydroxytanshinone IIA (5). Mp 205–206°; HRMS m/z; Found 310.1183 [M]⁺ (C₁₉H₁₈O₄ requires 310.1204); IR ν cm⁻¹: 3500, 1665, 1575, 1530; ¹H NMR: δ 1.33 (3H, s), 1.35 (3H, s), 1.94 (2H, m), 2.26 (3H, near s), 3.31 (2H, m), 3.74 (1H, dd, J = 4, 8 Hz), 7.24 (1H, s), 7.56 (1H, d, J = 8 Hz).

Acetylation of tanshindiol A (1). A mixture of 1 (10 mg), Ac₂O (0.3 ml) and C₅H₅N (0.3 ml) was stirred at room temp. for 3 hr. The residue obtained on removal of solvent was separated by CC on silica gel with CHCl₃-MeOH (5:1) to give 7 (10 mg) as

orange-red crystals, mp 125–127°; MS m/z: 354 [M]⁺ (C₂₀H₁₈O₆), 281 [M – CH₂OCOMe]⁺; IR ν cm⁻¹: 3500, 1725, 1660, 1570, 1530; ¹H NMR: δ 1.87 (2H, m), 2.14 (3H, s), 2.26 (3H, d, J = 1.8 Hz), 2.75 (2H, m), 3.20 (2H, m), 4.22 (2H, s), 7.25 (1H, q, J = 1.8 Hz), 7.54 (1H, d, J = 8 Hz), 7.91 (1H, d, J = 8 Hz).

Oxidation of tanshindiol B (2) and tanshindiol C (3). A mixture of 2 (11 mg) and NaIO₄ (26 mg) in 90% MeOH (10 ml) was stirred at room temp. for 5 hr. The mixture was concd under reduced pressure, diluted with H_2O , and extracted with CHCl₃. Evapn of solvent afforded 8 (7 mg), mp 182–184°; MS m/z: 310 [M]⁺ (C₁₈H₁₄O₅); IR v cm⁻¹: 2840, 2720, 1720, 1680, 1580, 1535; ¹H NMR: δ 2.29 (3H, d, d = 1.5 Hz), 2.61 (3H, d), 2.90 (2H, d), 3.32 (2H, d), 7.33 (1H, d), d0 = 1.5 Hz), 7.73 (2H, d0, 9.85 (1H, near d1).

Under the same conditions, oxidations of 3 (4 mg) with NaIO₄ (10 mg) gave 8 (2.5 mg). Identification was made by spectral comparison (IR and ¹H NMR).

Reaction of 3 with Me₂CO. A mixture of 3 (4 mg), anhydrous CuSO₄ (5 mg) and Me₂CO (10 ml) was stirred at 40° for 5 hr, concd under reduced pressure, diluted with H₂O, and extracted with CHCl₃. Evapn of solvent afforded the acetonide (9) (2.5 mg), mp 117–119°; MS m/z 352 [M]⁺ (C₂₁H₂₀O_{5); ¹H NMR: δ1.54 (3H, s), 1.61 (6H, s), 1.99 (2H, m), 2.27 (3H, d, J = 1.2 Hz), 3.22 (2H, m), 4.15 (1H, m), 7.30 (1H, q, J = 1.2 Hz), 7.68 (1H, d, J = 8.4 Hz), 7.89 (1H, d, J = 8.4 Hz).}

Oxidation of tanshindial A (1). Oxidation of 1 (10 mg) with NaIO₄ (20 mg) in aq. MeOH gave 4 (7 mg), which was identical with the authentic sample.

Acetylation of 3α-hydroxytanshinone IIA (5). A mixture of 5 (6 mg), Ac₂O (0.2 ml) and C₅H₅N (0.5 ml) was stirred at room temp. for 5 hr. The residue, concd under reduced pressure, was chromatographed on silica gel with CHCl₃-MeOH (5:1) to afford 10 (5 mg), mp 200-201°; MS m/z: 352 [M]⁺ (C₂₁H₂₀O₅); IR v cm⁻¹: 1730, 1665, 1575, 1530; ¹H NMR: δ1.33 (6H, s), 2.03 (2H, m), 2.05 (3H, s), 2.26 (3H, d, d) = 1.5 Hz), 3.32 (2H, d), d = 6.6 Hz), 5.00 (1H, d), d = 4.9 Hz), 7.24 (1H, d), d = 1.5 Hz), 7.62 (2H, d).

Acknowledgement—We thank Professor H. Kakisawa (Tsukuba University) for providing the authentic sample of tanshinone IIA.

REFERENCES

- Fang, C., Chang, P. and Hsu, T. (1976) Huahsueh Hsuehpao
 197; (1978) Chem. Abst. 88, 177078z.
- Onitsuka, M., Fujiu, M., Shinma, N. and Maruyama, H. B. (1983) Chem. Pharm. Bull. 31, 1670.
- Luo, H., Sheng, L., Zhang, S., Xu, L. and Wei, P. (1983) Yaoxue Xuebao 18, 1; (1983) Chem. Abstr. 99, 16073f.
- Okumura, Y., Kakisawa, H., Kato, M. and Hirata, Y. (1961)
 Bull. Chem. Soc. Jpn. 34, 1895.
- Kakisawa, H., Hayashi, T., Okazaki, I. and Ohashi, M. (1968) Tetrahedron Letters 3231.